Si el número de posibles resultados de un experimento es pequeño, es relativamente fácil listar y contar todos los posibles resultados. Al tirar un dado, por ejemplo, hay seis posibles resultados.
Si, sin embargo, hay un gran número de posibles resultados tales como el número de niños y niñas por familias con cinco hijos, sería tedioso listar y contar todas las posibilidades.
Las posibilidades serían, 5 niños, 4 niños y 1 niña, 3 niños y 2 niñas, 2 niños y 3 niñas, etc. Para facilitar el conteo examinaremos tres técnicas: La técnica de la multiplicación, la técnica de la permutación, y la técnica de la combinación.
La Técnica de la Multiplicación
La técnica de la multiplicación: Si hay m formas de hacer una cosa y hay n formas de hacer otra cosa, hay m x n formas da hacer ambas cosas
En términos de fórmula
Número total de arreglos = m x n
Esto puede ser extendido a más de dos eventos. Para tres eventos, m, n, y o:
Número total de arreglos = m x n x o
Regla de la suma
Si una primera tarea puede realizarse de m formas y una segunda tarea puede realizarse de n formas, y no es posible realizar ambas tareas de manera simultánea, entonces para realizar cualquiera de ellas pueden utilizarse cualquiera de m + n formas.
La Técnica de la Permutación
Como vimos anteriormente la técnica de la multiplicación es aplicada para encontrar el número posible de arreglos para dos o más grupos. La técnica de la permutación es aplicada para encontrar el número posible de arreglos donde hay solo u grupo de objetos. Como ilustración analizaremos el siguiente problema: Tres componentes electrónicos - un transistor, un capacitor, y un diodo - serán ensamblados en una tablilla de una televisión. Los componentes pueden ser ensamblados en cualquier orden. ¿De cuantas diferentes maneras pueden ser ensamblados los tres componentes?
Las diferentes maneras de ensamblar los componentes son llamadas permutaciones, y son las siguientes:
T D C D T C C D T
T C D D C T C T D
Permutación: Todos los arreglos de r objetos seleccionados de n objetos posibles
La fórmula empleada para contar el número total de diferentes permutaciones es:
n P r = n!
(n – r )!
Donde:
nPr es el número de permutaciones posible
n es el número total de objetos
r es el número de objetos utilizados en un mismo momento
n P r = n! = 3! = 3 x 2 = 6
(n – r )! ( 3 – 3 )! 1
La Técnica de la Combinación
En una permutación, el orden de los objetos de cada posible resultado es diferente. Si el orden de los objetos no es importante, cada uno de estos resultados se denomina combinación. Por ejemplo, si se quiere formar un equipo de trabajo formado por 2 personas seleccionadas de un grupo de tres (A, B y C). Si en el equipo hay dos funciones diferentes, entonces si importa el orden, los resultados serán permutaciones. Por el contrario si en el equipo no hay funciones definidas, entonces no importa el orden y los resultados serán combinaciones. Los resultados en ambos casos son los siguientes:
Permutaciones: AB, AC, BA, CA, BC, CB
Combinaciones: AB, AC, BC
Combinaciones: Es el número de formas de seleccionar r objetos de un grupo de n objetos sin importar el orden.
La fórmula de combinaciones es:
n C r = n!
r! (n – r )!
EJEMPLOS DE REGLA DE MULTIPLICACIÓN Y SUMA:
1. ¿Cuántas palabras de tres letras se pueden formar con cinco consonantes y tres vocales de modo que cada palabra comience y termine en consonante?
C V C
--- --- --- 5.3.4 = 60 (regla del producto)
5 3 4
2. Determine el número de enteros de seis dígitos (que no comiencen con cero) en los que
ningún dígito se pueda repetir.
9 9 8 7 6 5
--- --- --- --- --- ---
9.9.8.7.6.5 = 136.080 (regla del producto)
se pueden repetir los dígitos.
9.10.10.10.10.10 = 900.000 (regla del producto)
3. Ana y María vieron a dos hombres alejarse en automóvil frente a una joyería, justo antes de que sonara una alarma contra robos. Cuando fueron interrogadas por la policía, las dos jóvenes dieron la siguiente información acerca de la placa (que constaba de dos letras seguidas de cuatro dígitos). María estaba segura de que la segunda letra de la placa era una O o una Q, y que el último dígito era un 3 o un 8. Ana dijo que la primera letra de la placa era una C o una G y que el primer dígito era definitivamente un 7.
¿Cuántas placas diferentes tendrá que verificar la policía?
C/G Q/O 7 0 a 9 0 a 9 8 ó 3
----- ----- ----- ----- ----- -----
| | | | | |
2 x 2 x 1 x 10 x 10 x 2 = 800 (regla del producto)
4.Tres pueblos, designados como A, B y C, están intercomunicados por un sistema de carreteras de doble sentido.
¿De cuántas formas puede Juan ir del pueblo A al pueblo C?
2 + 4.3 = 14 (reglas de la suma y del producto)
¿Cuántos trayectos puede hacer Juan del pueblo A al pueblo C y de regreso al pueblo A?
14.14 = 196 (regla del producto)
¿Cuántos de los trayectos completos de la parte (b) son tales que el viaje de regreso (del pueblo C al pueblo A) es diferente, al menos parcialmente, de la ruta que toma Juan del pueblo A al pueblo C? (Por ejemplo, si Juan viaja de A a C por las rutas R1 y R6 podría regresar por las rutas R6 y R2, pero no por R1 y R6).
14.13 = 182 (regla del producto)
5. Una biblioteca tiene 40 libros de historia y 50 de filosofía. Si un estudiante quiere aprender acerca de alguno de estos dos temas, por la regla de la suma puede elegir entre 40 + 50 = 90 libros.
(Nota: el estudiante no quiere estudiar historia y filosofía, sino historia o filosofía.)
EJEMPLOS DE REGLA DE PERMUTACIÓN:
1. ¿Cuántos números de 5 cifras diferentes se puede formar con los dígitos: 1, 2, 3, 4, 5.?
m = 5 n = 5
Sí entran todos los elementos. De 5 dígitos entran sólo 3.
Sí importa el orden. Son números distintos el 123, 231, 321.
No se repiten los elementos. El enunciado nos pide que las cifras sean diferentes.

2. ¿De cuántas formas distintas pueden sentarse ocho personas en una fila de butacas?
Sí entran todos los elementos. Tienen que sentarse las 8 personas.
Sí importa el orden.
No se repiten los elementos. Una persona no se puede repetir.

3. ¿De cuántas formas distintas pueden sentarse ocho personas alrededor de una mesa redonda?

4. Con las cifras 2, 2, 2, 3, 3, 3, 3, 4, 4; ¿cuántos números de nueve cifras se pueden formar?
m = 9 a = 3 b = 4 c = 2 a + b + c = 9
Sí entran todos los elementos.
Sí importa el orden.
Sí se repiten los elementos.

5. Con las letras de la palabra libro, ¿cuántas ordenaciones distintas se pueden hacer que empiecen por vocal?
La palabra empieza por i u o seguida de las 4 letras restantes tomadas de 4 en 4.
Sí entran todos los elementos.
Sí importa el orden.
No se repiten los elementos.

EJEMPLOS DE REGLA DE COMBINACIONES:
1. En una clase de 35 alumnos se quiere elegir un comité formado por tres alumnos. ¿Cuántos comités diferentes se pueden formar?
No entran todos los elementos.
No importa el orden: Juan, Ana.
No se repiten los elementos.

2. ¿De cuántas formas pueden mezclarse los siete colores del arco iris tomándolos de tres en tres?
No entran todos los elementos.
No importa el orden.
No se repiten los elementos.

3. A una reunión asisten 10 personas y se intercambian saludos entre todos. ¿Cuántos saludos se han intercambiado?
No entran todos los elementos.
No importa el orden.
No se repiten los elementos.

4. En una bodega hay en un cinco tipos diferentes de botellas. ¿De cuántas formas se pueden elegir cuatro botellas?
No entran todos los elementos. Sólo elije 4..
No importa el orden. Da igual que elija 2 botellas de anís y 2 de ron, que 2 de ron y 2 de anís.
Sí se repiten los elementos. Puede elegir más de una botella del mismo tipo.

5. ¿Cuántas apuestas de Lotería Primitiva de una columna han de rellenarse para asegurarse el acierto de los seis resultados, de 49?
No entran todos los elementos.
No importa el orden.
No se repiten los elementos.

BIBLIOGRAFÍA:
http://www.mitecnologico.com/Main/ReglasDeAdicionProbabilidad
http://matematica.50webs.com/conteo.html
http://matematica.50webs.com/ejercicios-de-conteo.html
http://www.vitutor.com/pro/1/a_p.html
http://www.vitutor.com/pro/1/a_c.html